Video Saliency Detection via Dynamic Consistent Spatio-Temporal Attention Modelling

نویسندگان

  • Sheng-hua Zhong
  • Yan Liu
  • Feifei Ren
  • Jinghuan Zhang
  • Tongwei Ren
چکیده

Human vision system actively seeks salient regions and movements in video sequences to reduce the search effort. Modeling computational visual saliency map provides important information for semantic understanding in many real world applications. In this paper, we propose a novel video saliency detection model for detecting the attended regions that correspond to both interesting objects and dominant motions in video sequences. In spatial saliency map, we inherit the classical bottom-up spatial saliency map. In temporal saliency map, a novel optical flow model is proposed based on the dynamic consistency of motion. The spatial and the temporal saliency maps are constructed and further fused together to create a novel attention model. The proposed attention model is evaluated on three video datasets. Empirical validations demonstrate the salient regions detected by our dynamic consistent saliency map highlight the interesting objects effectively and efficiency. More importantly, the automatically video attended regions detected by proposed attention model are consistent with the ground truth saliency maps of eye movement data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perception-oriented video saliency detection via spatio-temporal attention analysis

Human visual system actively seeks salient regions and movements in video sequences to reduce the search effort. Computational visual saliency detection model provides important information for semantic understanding in many real world applications. In this paper, we propose a novel perception-oriented video saliency detection model to detect the attended regions for both interesting objects an...

متن کامل

Video saliency detection by spatio-temporal sampling and sparse matrix decomposition

In this paper, we present a video saliency detection method by spatio-temporal sampling and sparse matrix decomposition. In the method, we sample the input video sequence into three planes: X-T slice plane, YT slice plane, and X-Y slice plane. Then, motion saliency map is extracted from the X-T and Y-T slices, and static saliency map is extracted from the X-Y slices by low-rank matrix decomposi...

متن کامل

Spatio-Temporal Saliency Perception via Hypercomplex Frequency Spectral Contrast

Salient object perception is the process of sensing the salient information from the spatio-temporal visual scenes, which is a rapid pre-attention mechanism for the target location in a visual smart sensor. In recent decades, many successful models of visual saliency perception have been proposed to simulate the pre-attention behavior. Since most of the methods usually need some ad hoc paramete...

متن کامل

Salient Region Detection in Video Using Spatiotemporal Visual Attention Model

Abstract Salient region detection is very useful in video analysis. A salient region detection method based on spatiotemporal visual attention model is proposed in this paper. Visual attention mechanism is used to generate saliency map of the image sequence. Spatial saliency map is computed in accordance with some predefined features including intensity, color and orientation. Temporal visual s...

متن کامل

No-Reference Video quality assessment of H.264 video streams based on semantic saliency maps

The paper contributes to No-Reference video quality assessment of broadcasted HD video over IP networks and DVB. In this work we have enhanced our bottom-up spatio-temporal saliency map model by considering semantics of the visual scene. Thus we propose a new saliency map model based on face detection that we called semantic saliency map. A new fusion method has been proposed to merge the botto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013